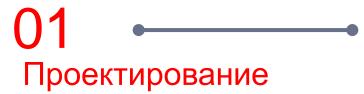


Электронно-лучевые технологии


www.robotek.msk.ru www.pro-beam.com

Команда профессионалов в области комплексного машиностроительного В произ**водиниром го**ставке металлообрабатывающего и специализированного высокотехнологичного оборудования.

Этапы изготовления и внедрения оборудования или технологии

Сопровождение всего производственного цикла специалистами компании

При проектирование учитываются требования заказчика и технологические задачи.

06 ----- Сервис

Быстрое и качественное решение проблем, обеспечение бесперебойной эксплуатации, внедрение новинок, расширение возможностей.

02

Комплектация

Используются комплектующие отечественного или импортного производства по желанию заказчика.

05

Ввод в эксплуатацию

Специалисты, сдающие оборудование, обладают всесторонними знаниями, что значительно сокращает время ввода в эксплуатацию. По окончании сдачи проводится обучение персонала.

03

Производство

Высококвалифицированные специалисты и современное технологическое оборудование гарантирует точность и качество исполнения.

04

Монтаж

Максимально сжатые сроки благодаря качественной конструкторской проработке и слаженным действиям коллектива.

Электронно – лучевая технология – области применения

Энергетика

Авиакосмическая промышленность

Двигателестроение

Судостроительное производство

Железнодорожная промышленность

Машиностроение и с танкостроение

Автомобилестроение

Нефтехимическая п ромышленность

Технологии применения электронного луча

Сварка

Сварка широкого диапазона толщин 0,1- 400 мм. 100% проплавление. Сварка практически любых металлов и сплавов. Возможность сварки разнородных металлов. Получение прецизионных сварных швов без необходимости дополнительной обработки. Отсутствие брака.

Закалка

Поверхностная обработка, например, частичная закалка поверхностей, подверженных сильным механическим нагрузкам. Точечная обработка только рабочей поверхности. Обработка трудно доступных участков изделий

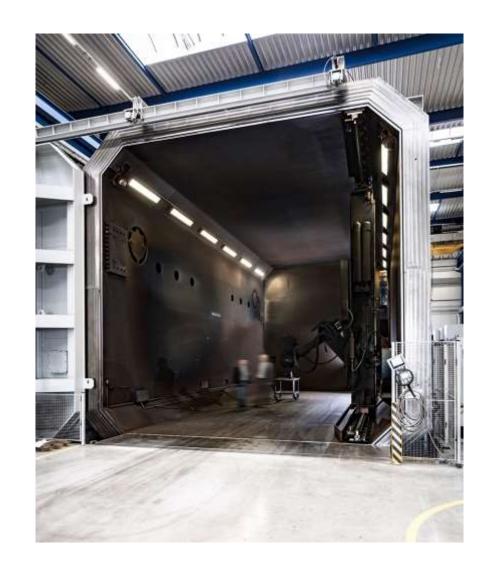
Сверление и перфорация

Сверление отверстий и изготовление сложных пазов в тонких и толстых металлических материалах, в листе и профилях. Минимальное отверстие диаметром не более 6-8 мкм. Перфорации для большинства сплавов.

Покрытия поверхности (напыление)

Покрытие поверхности изделия методом порошкового напыления электронным лучем в вакууме. Получение готовой поверхности за один проход. Не требуется дополнительная обработка.

Pro Beam – наш партнер в области электронно – лучевой технологии

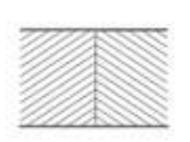


Почему именно pro-beam – как стратегический партнер

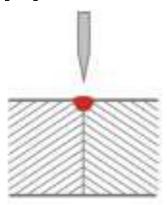
- Опыт более 40 лет в Аэрокосмической, Железнодорожной, Атомной, Нефтехимической, Машиностроительной и др. сегментах применения электронно-лучевых технологий.
- Собственное производство всех компонентов электронно лучевой аппаратуры.
- Комплексное решение под ключ Проектирование, производство, поставка, внедрение
- Высокая степень автоматизации Богатый практический опыт для серийных производств.
- Огромный опыт в сварке изделий массой от 5 гр до 50 тонн.
- Разработка технологий для сварки специальных сплавов и материалов для высокотехнологичных и наукоемких отраслей производств.

Почему именно pro-beam – как стратегический партнер

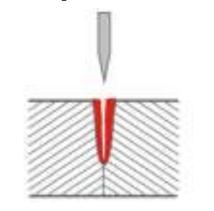
- Будущие технологии
 - и решения по автоматизации, например,
 - Технология многолучевой обработки для обеспечения максимальной производительности
 - Лазерная сварка без рассеяния излучения
 - Автоматический контроль шва в качестве основы оптимального качества сварки, максимальной воспроизводимости и производительности, независимо от оператора
- Создание совместного предприятия в России совместно с компанией Роботек
- Работа с проектными институтами для определения новых отраслей применения электронного луча.

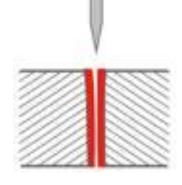


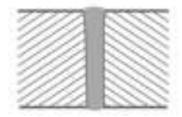
Преимущества электронно –лучевой технологии сварки

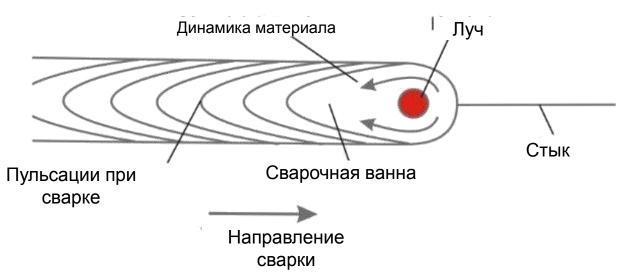

- Сварка практические любых металлов и сплавов: Алюминий, жаропрочная и нержавеющая сталь, титан, медь, латунь, бронза, вольфрам, необий и т.д.
- Сварка материалов толщиной до 400 мм.
- Сварка разнородных металлов и сплавов: например медь алюминий, нержавеющая сталь медь и т.д.
- Прецизионная сварка, узкий сварочный шов, минимальная зона термического влияния.
- Чистая сварка. Отсутствие необходимости в дополнительной мех. обработке. Нет окалин и грата. Получение готовой детали
- Простота в настройке на сварочный стык по технологии обработки вторичных электронов.
- Простая подготовка сварного соединения, нет необходимости фасок.
- Сварка за один проход высокая скорость процесса.
- Неограниченные возможность применения.
- 100 % автоматизация процесса. Удобное и производительное программное обеспечение для подготовки управляющей программы любой сложности. Быстрая настройка под новое изделие и сложную форму сварочного шва или обрабатываемой поверхности.
- 100 % повторяемость процесса и возможность автоматизации производства.
- 100% контроль запрограммированного процесса, протоколирование, возможность быстрой настройки и при необходимости внесения изменений прямо в процессе работы.
- Применение для единичного и массового производства.

Кратко о электронно – лучевой технологии


Электронно-лучевая сварка (ЭЛ) – принцип действия Эффективность процесса КПД – 70%

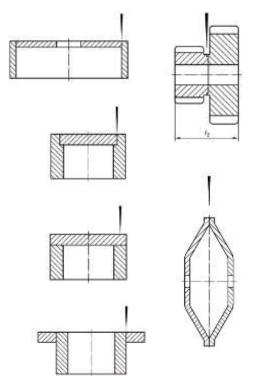

Стык до сварки

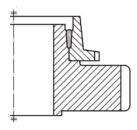

Плавление активируется после воздействия электронов

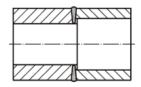

Быстрая передача тепла на молекулярном уровне

Зазор, окруженный расплавленным металлом – полное проплавление

Кристаллизация материала после сварки

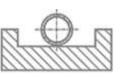



ЭЛ-сварка – варианты сварных соединений



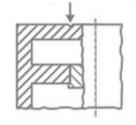
Стандартная

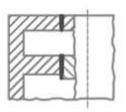
- Малый зазор для образования корня "V" подготовка
- С наполнителем



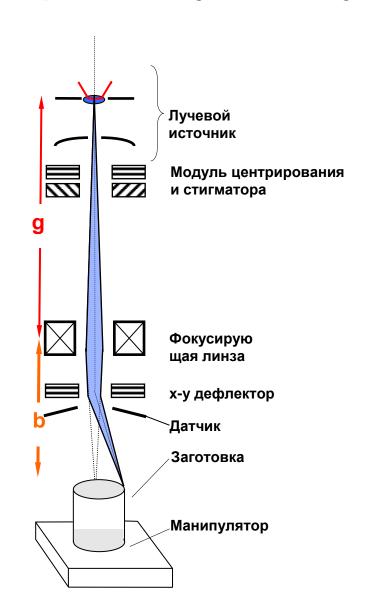


ЭЛ соответствие


- Заготовки без зазора («нулевой зазор")
- Подготовка шва с параллельными гранями
- Сварка без наполнителя



Дополнительный маркер для позиционирования



Типы электронно – лучевых пушек

- U = 60-150 кВ
- P= < 45 кВт
- Рабочие расстояния: длинные

U= 60 кВ

P= 6 кВт

Рабочие расстояния: короткие

Термическая обработка поверхности электронным лучом Закалка - примеры применения

Заготовка: Материал:

Глубина закалки:

Уровень твердости:

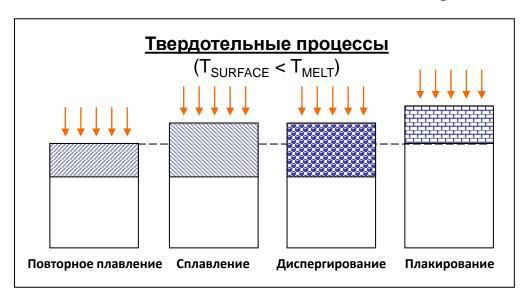
Время цикла:

Примечания:

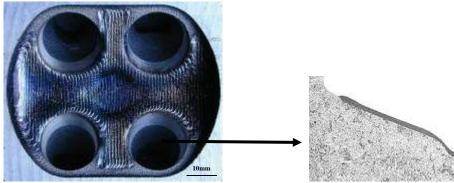
Распределительный вал Ковкое железо, GJS600 0,4 + 0,2 мм > 59 HRC 60 c

Частичная закалка контуров кулачков мин. искривление (10 км)

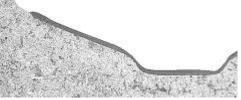
Кулачковый вал насоса 50Cr4 0,4 мм > 800 HV < 34 с

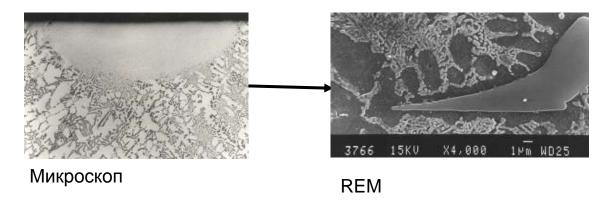

Частичная закалка контура кулачка и стенок четырех канавок

Вкладыш подшипника 100Cr6 0,4 мм > 900 HV < 30 c

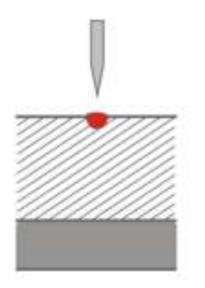

Частичная закалка контура кулачка Распределительный вал 50Cr4 0,4 мм > 750 HV < 17 с (4 кулачка)

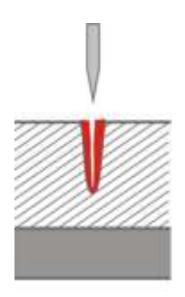
Одновременная закалка двух частей кулачка, контуров четырех кулачков, двух синхронизированных


Обработка поверхности пучком электронов – повышение плотности материала путем вторичного переплава

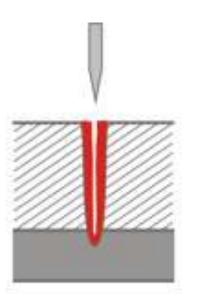

 $T_{SURFACE}$ = температура на поверхности = температура плавления

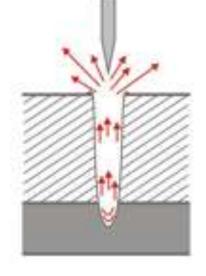
Головка блока цилиндров, AlSi9 Уплотнение поверхности путем переплавления


Сечение с переплавленным слоем (устранение пористости)


Общие и пользовательские преимущества:

- Стали с содержанием углерода мин. 0,18 %, - идеально 0,4 ... 0,8 % С с предварительной обработкой
- Геометрически определенные, локально ограниченные зоны твердости
- Глубина закалки 0,1-1,7 мм без плавления поверхности
- Твердотельные процессы: без плавления поверхности -> незначительные изменения поверхности


Перфорация и сверление пучком электронов – принцип действия

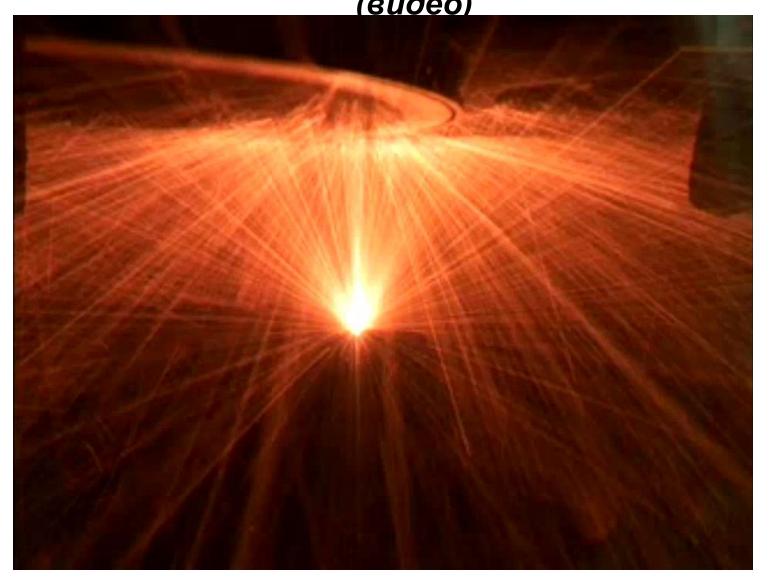


Частичное плавление материала на поверхности, образование канала для пара

Канал для пара проникает в материал

Луч проникает в металл до касания подложки. Расплавленный металл преобразуется в пар и удаляется из отверстия под высоким давлением

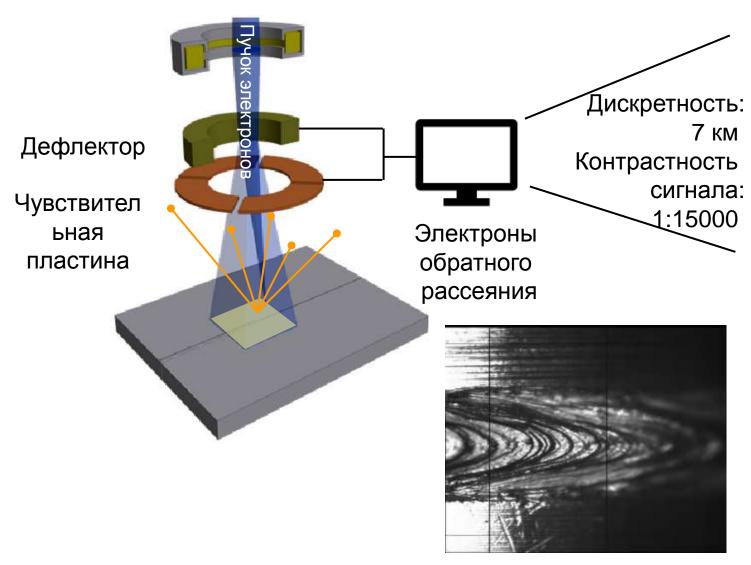
Примеры Перфорация и сверление пучком электронов


Вращающаяся головка для стекловаты

Камера сгорания

Возможности и преимущества:

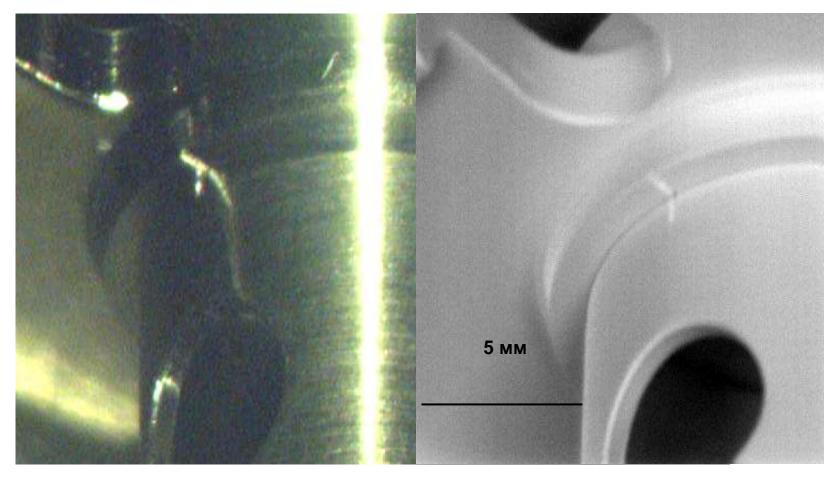
- Диаметр отверстия: от 0,08 до 5,0 мм
- До 2000 отверстий в секунду
- Превосходная воспроизводимость отверстий цилиндрической или конической формы, в том числе наклонных углов к поверхности
- Отношение глубины/диаметра до 20:1
- Толщина материала: до 8 мм (макс. 10 мм)


Перфорация и сверление пучком электронов – фото процесса (видео)

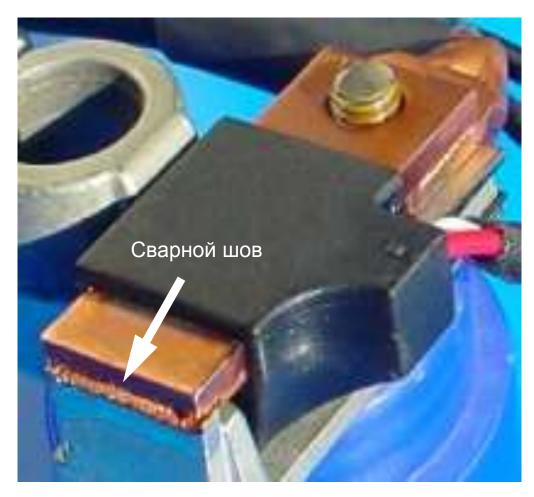
Специальное программное обеспечиние и оснастка для повышения эффективности Электронно Лучевой технологии

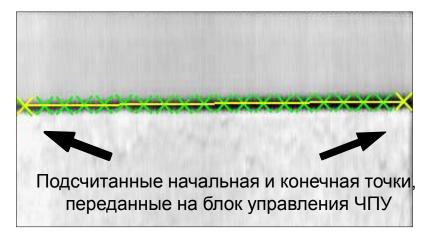
Контроль зоны обработки или сварочного шва за счет вторичных электронов

Картинка за счет ПО Pro Beam



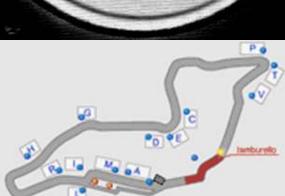
Современный внешний вид


Преимущество метода наблюдения по вторичным электронам


Свето-оптическое наблюдение

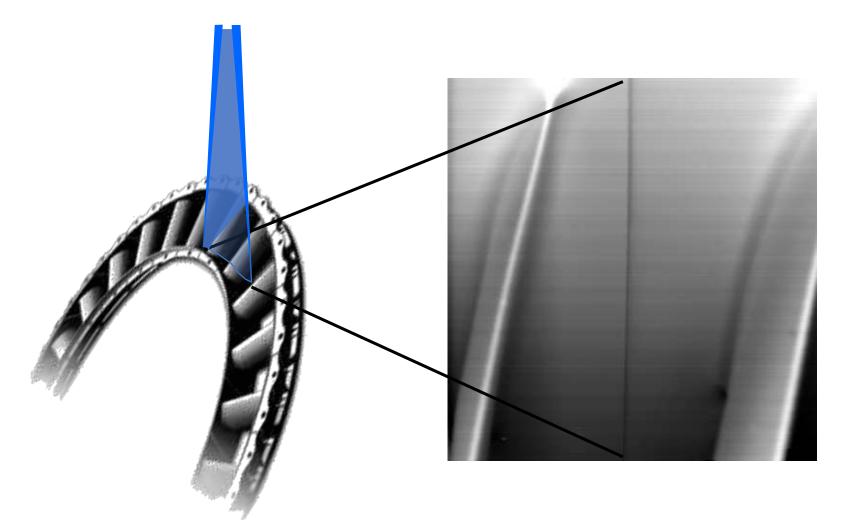
Электронно-оптическое наблюдение за счет вторичных электронов

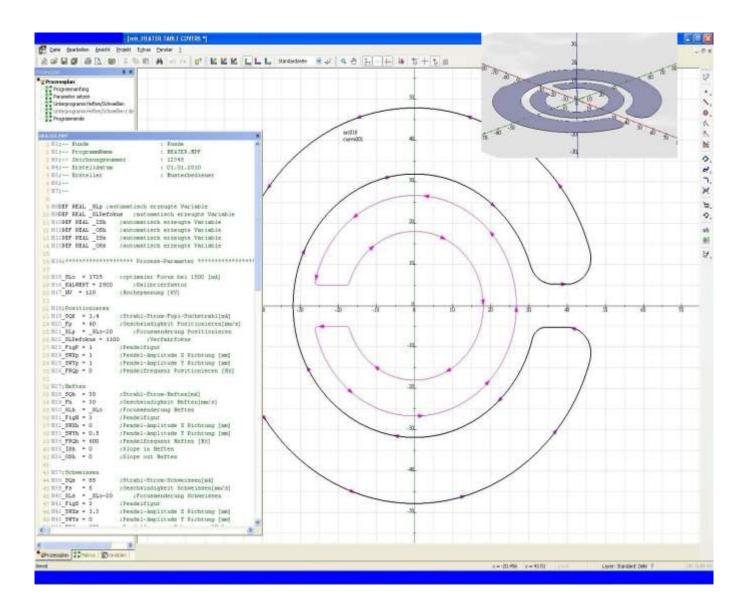
Автоматический контроль сварочных швов


Компонент для автомобильной электроники с линейным сварным швом

Электронно-оптическое изображение стыка вместе с анализом

Степени свободы за счет электронно-оптического мониторинга, получение максимально точной траектории сварочного шва в автоматическом режиме





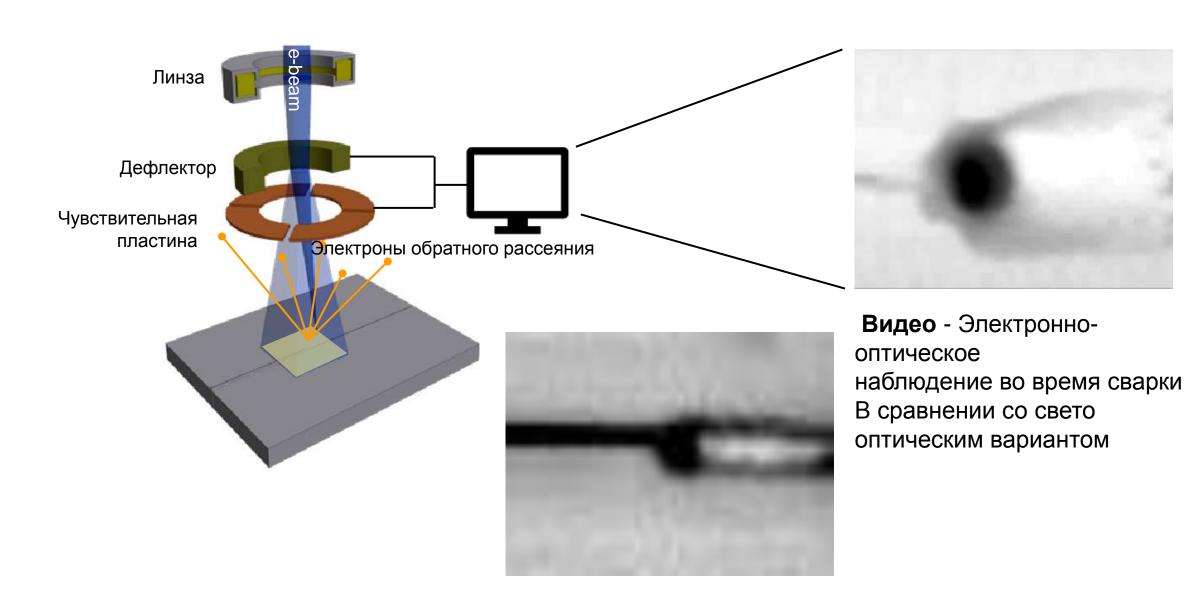
Автоматическая сварка сложных контуров

Изображение автоматической системы контроля швов, работающей в стандартном режиме Пример сварки лопасти рабочего колеса турбины

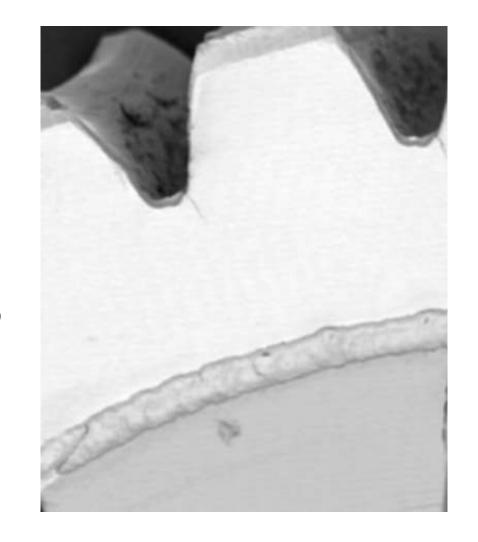
работа с CAD-CAM моделями

- Импорт DXF-, IGES-,STEPфайлов
- ЭЛ-специальный синтаксис
- Макрос для ЭЛпоследовательностей: позиционирование, прихваточные швы, сварка
- Полная параметризация пучка
- Графическое моделирование программы

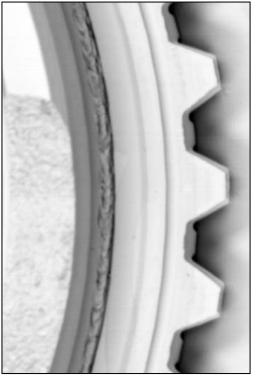
Видео Свето-оптического наблюдение за процессом Информация получается с цифровой Full HD Камеры

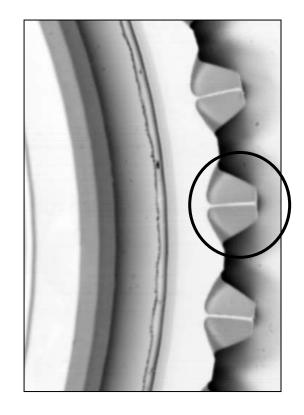

материал: 5 мм сталь поле зрения: 8 х 11 мм

сварочный ток: 0-50 мА наблюдение: от оси на 10° (снизу)

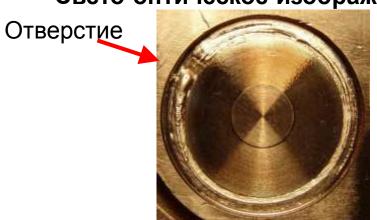

колебания: 2 кГц, круговые 1 мм

Плюсы применения наблюдения по вторичным электронам

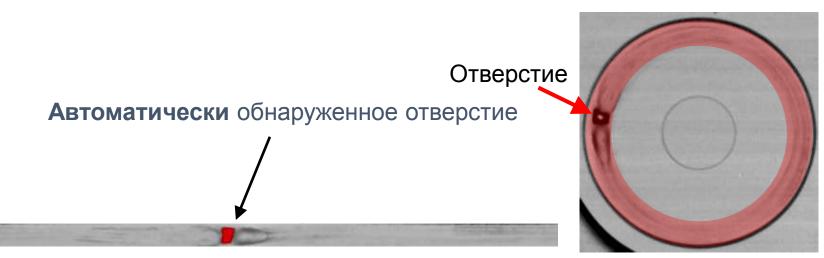



Контроль качества на месте полученного соединения по вторичным электронам

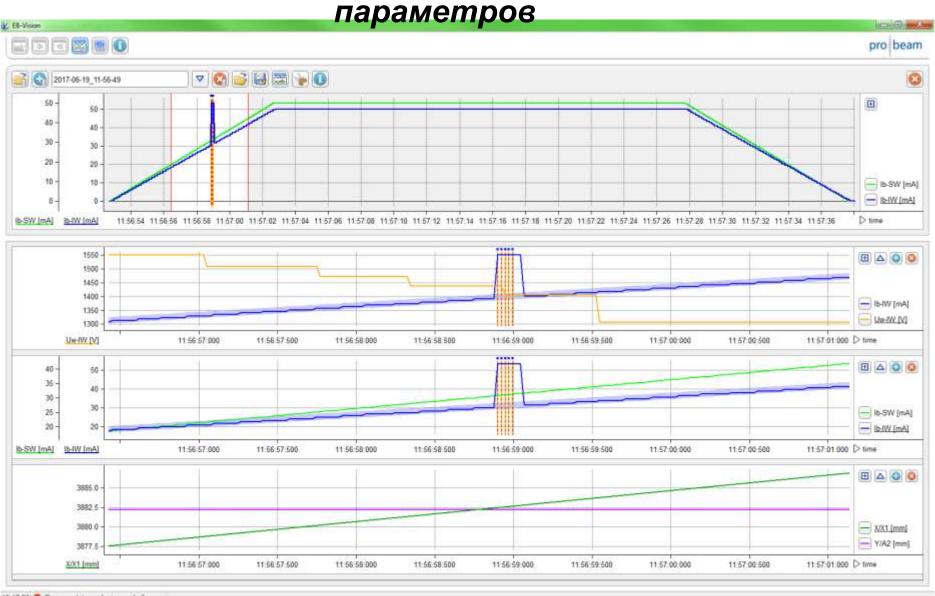
Проверка качества сборки

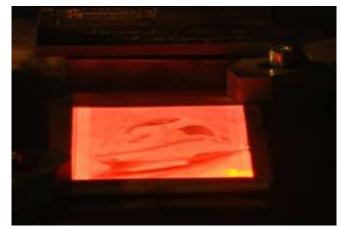


Правильная установка. Возможность приваривания заготовки

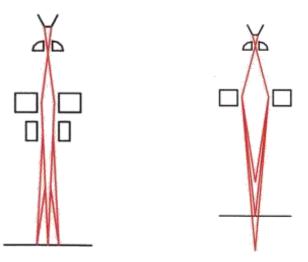

Неправильная установка. Невозможность приваривания заготовки

Контроль поверхности сварки





Электронно-оптическое изображение



Автоматическая регистрация всех рабочих параметров

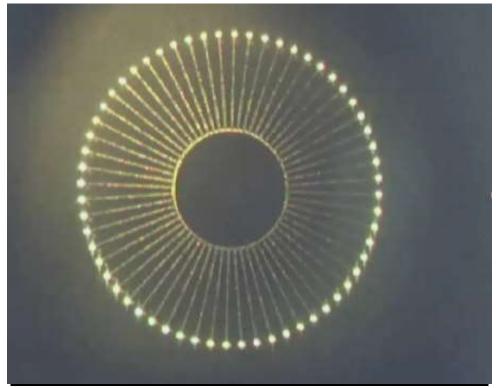
Технология нескольких пучков



Несколько пучков

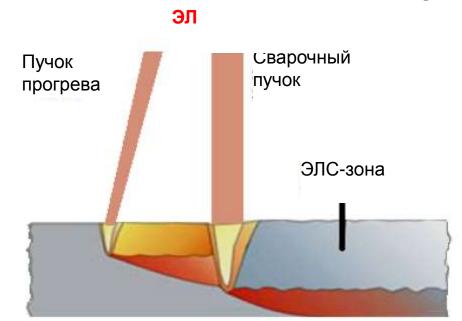
Мультифокус

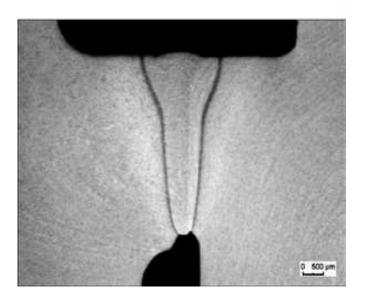
Электронно-лучевая сварка – сварка с несколькими сварочными ваннами одновременно

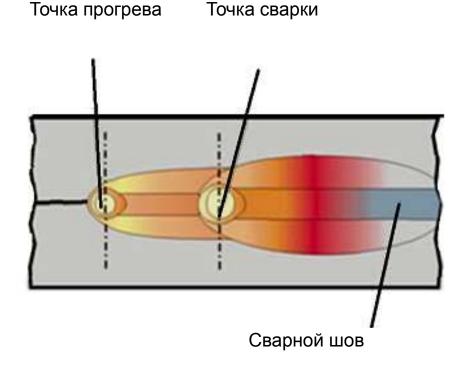


запатентованная pro-beam Зистема,

Сварка несколькими пучками повышает качество за счет баланса симметричных условий и скорости производства, что достигается путем применения имеющихся высоких мощностей, снижается процент усадки металла в процессе сварки и коробление изделия. Снижается перегрев при сварке малых толщин. Найдет применения в Аэрокосмической, Нефтехимической отрасли

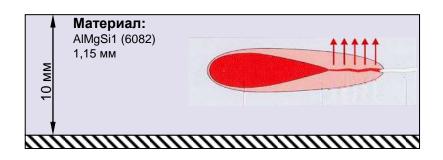

Электронно-лучевая сварка – сварка с несколькими сварочными ваннами одновременно

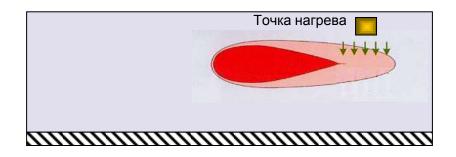


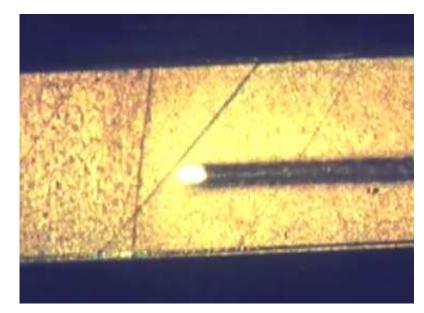


Прихваточные швы при сборке клапана – до 60 одновременных швов.

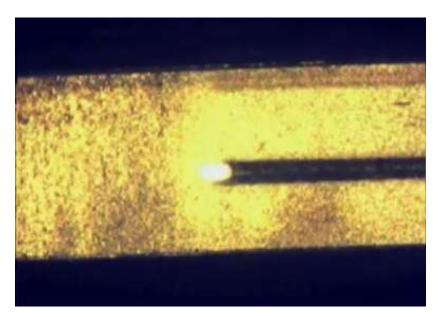
Электронно-лучевая сварка с локальным предварительным прогревом металла



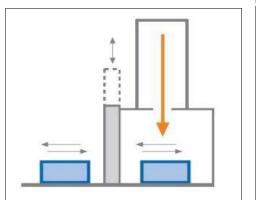



Система, запатентованная pro-beam

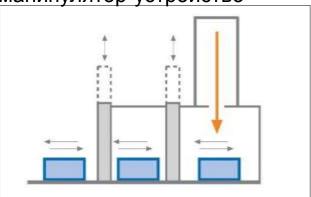
Сварка закаленных сталей невозможна без предварительного прогрева, препятствующего образованию трещин.


Устранение появления горячих трещин жаропрочных сплавов

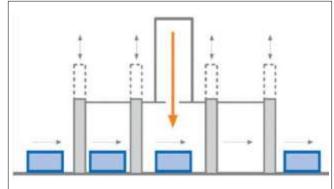
Сварка с образование горячих трещин (1 сварочная ванна)


Устранение горячих трещин за счет дополнительного источника тепла (2 сварочные ванны)

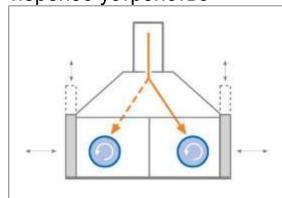
Варианты Электронно Лучевых установок


Концепции устройств

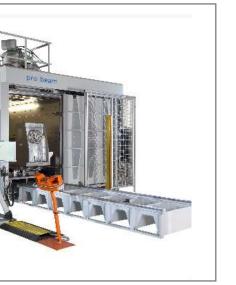
Камера-устройство


Вакуумирование Загрузка и Сварка выгрузка Повторное вакуумирование

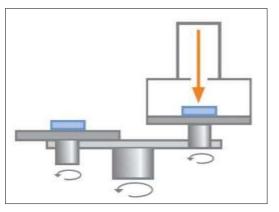
Загрузка-запираниеманипулятор-устройство



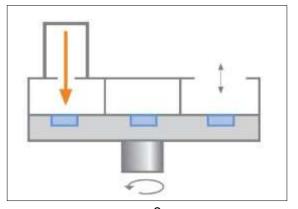
Вакуумирование Сварка Загрузка и Повторное выгрузка вакуумирование


Двухкамерное устройство

Загрузка-запираниеперенос-устройство



Камеры ротационного типа


Цикл - устройство

Загрузка и выгрузка

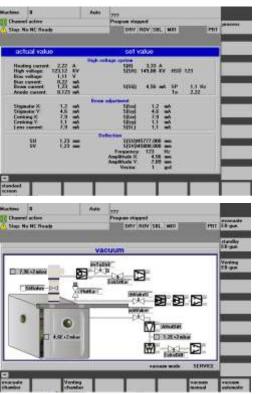
Вакуумирование Сварка Повторное вакуумирование

Загрузка – запирание - цикл - устройство

Сварка

Загрузка и выгрузка Вакуумирование Повторное вакуумирование

Фиксация заготовки – поворотно-подъемное устройство


Перемещение за счет DSH

Сварочная машина серии ЭЛ К60

ЭЛ-сварочная машина К60 – панель управления

Пример панели управления, возможность контроля работы установки удаленно через интернет

Варианты применения Электронно Лучевой технологии в производстве на реальных примерах

ЭЛ-технология - применение: сварка литий-ионных аккумуляторов

Преимущества:

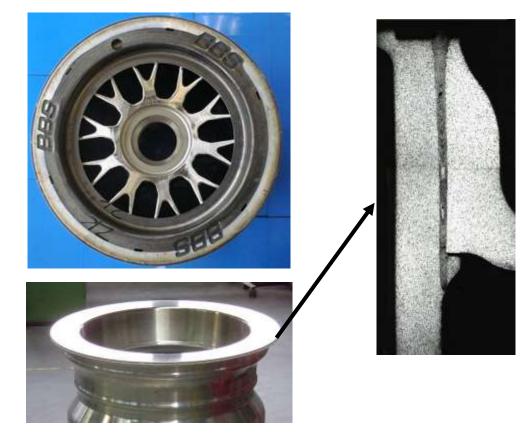
- Сварка в вакууме для безопасной герметизации аккумуляторов
- Быстрая обработка за счет технологии нескольких сварочных ванн

ЭЛ-технология - применение: сварка дисков из алюминиевых и магниевых сплавов

Технические характеристики:

Объем камеры: 2 м³

Макс. напряжение: 80 кВ


Мощность пучка: 15 кВт

Время цикла: 60 с

Заготовка: Диск

Материал: ZK60 / AZ80 (Мg-сплав)

- Стык незаметен после обработки
- Высокая автоматизация, в том числе поиск стыков
- Сварочный процесс без участия оператора
- Универсальная система
- Разнообразие компонентов и технологий

Гоночный диск с приваренным дефлектором (незаметно после обработки верхней кромки)

Макросечение s=20 мм

Комплексные устройства LRT200 / Пониженное давление лазера/ ЭЛ-сварка

Полностью автоматизированный цикл производства шестерен

Системы GEARline с электронным пучком или

лазером

15x Volkswagen, Германия

9x Volkswagen Group - Китай

2x Seat

Технические характеристики:

1. Объем камеры: 0,165 м3

2. Макс. напряжение: 60 кВ

3. Мощность пучка: 6 кВт

Время цикла: 15-18 с

5. Заготовка: зубчатое колесо

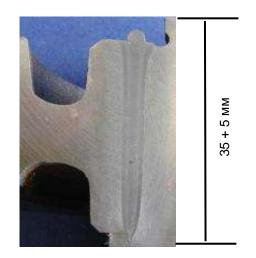
6. Материал: 16MnCr5

ЭЛ-технология - применение: приводной вал

Технические характеристики:

Объем камеры: 0,1 м³

Макс. напряжение: 80 кВ


Мощность пучка: 15 кВт

Время цикла: 30

Заготовка: выходной вал VW Tuareg

Материал: 8CrNiMo6

- Перемещение генератора ЭЛ
- Круглый стол с 3 шпинделями
- Радиальная и осевая сварка в одном зажиме
- Возможность ручной/автоматизированной загрузки

ЭЛ-технология - применение: сварка приводного вала

Технические характеристики:

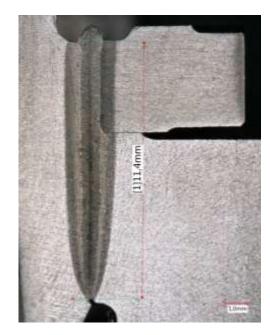
Объем камеры: 0.5 м^3

Макс. напряжение: 120 кВ

Мощность пучка: 3,3 кВт

Заготовка: приводной вал

Maтериал: 20 MnCr5


- Сварочный шов для соединения трех деталей
- Экономия одной операции
- Экономия массы за счет полостей

Электроннолучевые швы для соединения трех элементов и закрытия полости

Поперечное сечение компонента

Шлиф поперечного сечения, макро, s > 11 мм

ЭЛ-технология - применение: сварка зубчатых колес

Технические характеристики:

Объем камеры: 0,5 м³

Макс. напряжение: 100 кВ

Мощность пучка: 2,2 кВт

Заготовка: зубчатые колеса

Материал: TL 4227/TL 4521

- Полная автоматизация, включая определение стыков
- Сварочный процесс без участия оператора
- Практически отсутствует искривление

ЭЛ-шов при сварке двух зубчатых колес

Поперечное сечение, макро, s > 4 мм

	ld Name	Nennmaß	OT	UT	Messwert	Grafik	
1	9 P01	33,3043	1,0846	-1,8671	33,1069		
2	26 PLIKK		0,1500		0,0554		
3	28 RL KK		0,1000		0,0350		
4	39 RL Kegel		0,1000		0,0266		

ЭЛ-технология - применение: закалка рабочих элементов распред вала

Технические характеристики:

Объем камеры: 0,165 м³

Макс. напряжение: 60 кВ

Мощность пучка: 6 кВт

Время цикла: 17 с

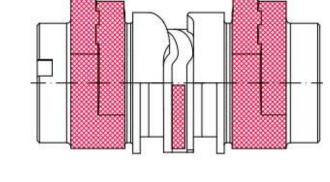
Заготовка: распределительный

вал

Материал: 51CrV4

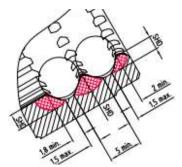
Общие и пользовательские преимущества:

• Минимальное искривление за счет подвода поз. 1


• Применяемость практически ко всем готовым кулачковым элементам

- Отсутствие шероховатости поверхности
- Отсутствие выцветания
- Большой экономический потенциал




Поз. 2

Поз. 3

ЕВН форма кулачка (4 кулачка), около 13 с

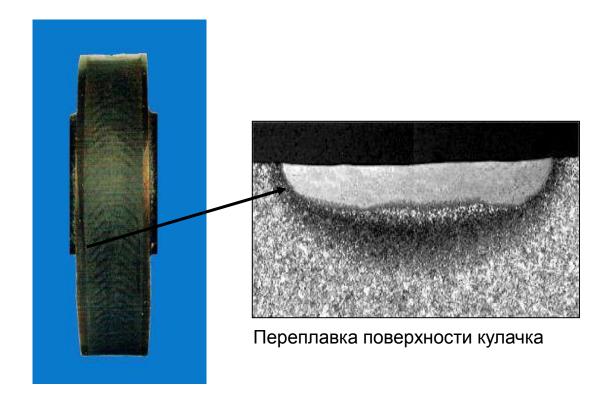
ЕВН шариковая гайка (3 зубца), около 2,5 с

ЭЛ-технология - применение: закалка

Технические характеристики:

Объем камеры: 0.5 м^3

Макс. напряжение.: 60 кВ


Мощность пучка: 10 кВт

Время цикла: 60 с

Заготовка: распределительный

вал

Материал: GGG60 (GJS600)

Общие и пользовательские преимущества:

Быстрое самостоятельное охлаждение во время затвердевания пучком электронов повышает твердость и износостойкость в сравнении с остальными методами закалки

ЭЛ-технология - применение: Легких сплавов - Алюминий

Пример: Алюминий - верх Ø 6 для емкости Ариан 5

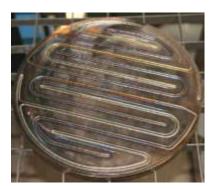
MT Aerospace AG

Технические характеристики:

Объем камеры: 600 м³

Макс. напряжение: 80 кВ

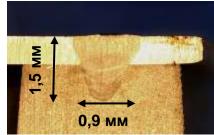
Мощность пучка: 45 кВт


Время цикла: 1,5 ч (глубокая сварка, 31 минута)

Заготовка: пластина

Материал: AlCu6Mn (AA2219)

- Отсутствует альтернативный производственный процесс
- 100 % испытания США
- Обработка без трещин, формования и механической обработки
- Высокая надежность в серийном производстве (контрактное производство)


Пластина смены головки AlMg4,5Mn

Полосовая сталь Литье в постоянные формы (AlSi9Mg) с кованым сплавом (AlMg4.5Mn)

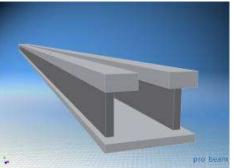
(верх)

Охлаждающая плита Литье (AlSi10Mg) с кованым сплавом (AlMgSi1)

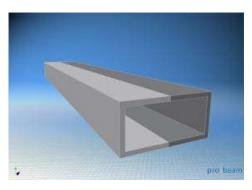
2,5 MM

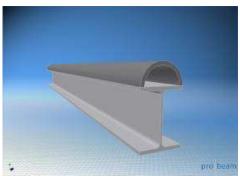
- Смешанные соединения литейного/кованого сплава
- Очень низкая остаточная пористость
- Низкий коэффициент деформации

- Сварка и шлифовка в одном зажиме, частично в одном цикле (технология нескольких ванн)
- Низкая пористость за счет нескольких сварочных ванн, идущих друг за другом (одна струя с быстрым отклонением)
- Верхний ползун с идеальной плоскостностью (оптика)



Подлокотник A380 (авиация)




Преимущества:

- Широкий спектр проектирования
- Высокий инновационный потенциал
- Идеальные полые конструкции

Технические характеристики:

Объем камеры: 0,6 м³

Макс. напряжение: 80 кВ

Мощность пучка: 15 кВт

Время цикла: 45 с

Заготовка: корпус цилиндров

Материал: G-AlSi7

ЭЛ-швы для герметизации охлаждающих каналов

Поперечное сечение, макро, s = 6 мм

- 1-элементный поток (система блокировки переноса)
- Высокая автоматизация, включая поиск стыков, без участия оператора в сварочном процессе

Поперечное сечение, макро, низкие выбросы

ЭЛ-технология - применение: сварка / датчики

Технические характеристики:

Объем камеры: 0,5 м³

Макс. напряжение. 140 кВ

Мощность пучка: 0,6 кВт

Время цикла: 10 с

Заготовка: датчик

Материал: Inconel 625 / сплав

HC22

- Без окисления оболочки
- Без необходимости в очистке после ЭЛобработки
- Большая глубина сварки при низкой температуре
- Сварка с собранными электронными компонентами

Соединение механически изготовленных компонентов с уж установленным электронными компонентами

Поперечное сечение, макро, s >3,0 мм

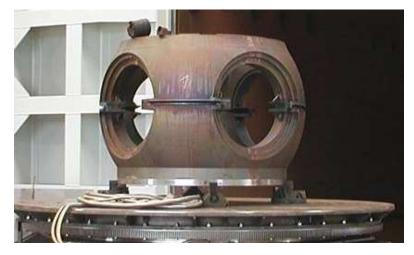
Сварка необия

РЧ-полость для линейного ускорителя, установленного на поворотном манипуляторе ЭЛ сварочной машины

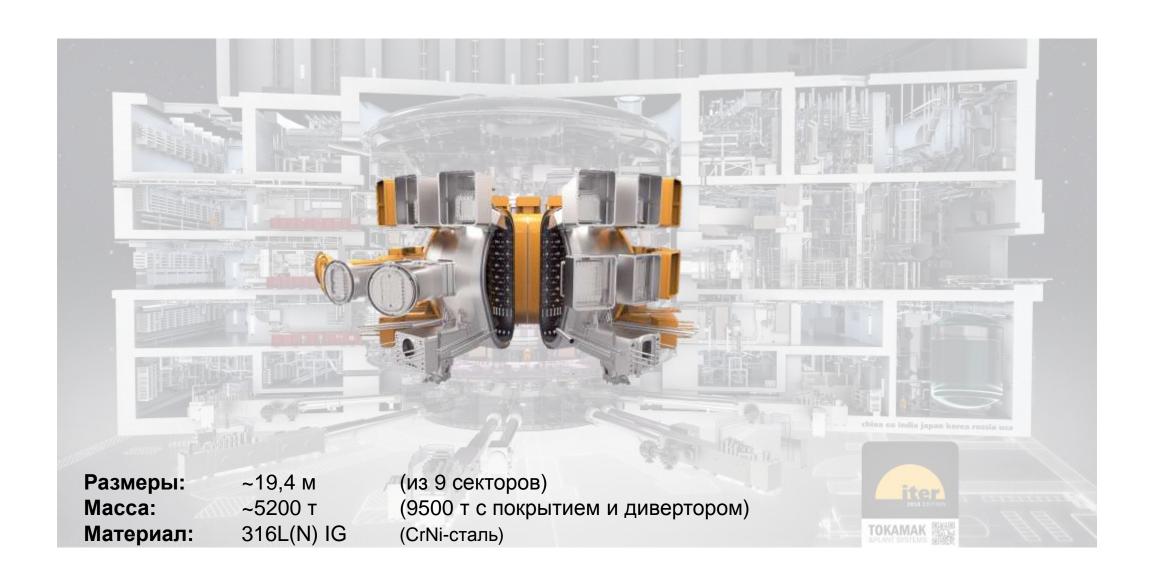
Материал: ниобий

Стол оператора загрузочной машины S20

Сварка крупногабаритных изделий


Крышка вакуумной печи

Детали тяжелого горного оборудования


Приводной вал обрабатывающего центра

Ступица турбины

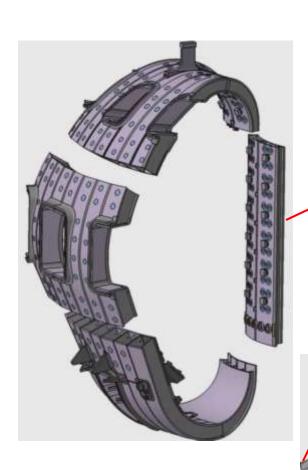
Варианты применения Электронно Лучевой технологии в атомной индустрии

Вакуумный сосуд МТЭР – термоядерный реактор

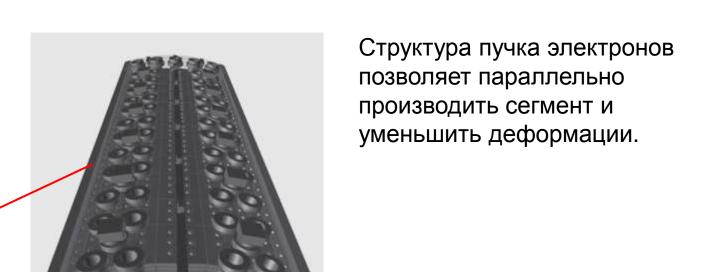
Один сегментов вакуумного сосуда (МТЭР)

Конструкция с двойной стенкой из 316LN(IG) толщиной 60 мм.

Размер: 11x7 м Масса: ~450 т


Допуск вдоль кромки сектора ±5 мм

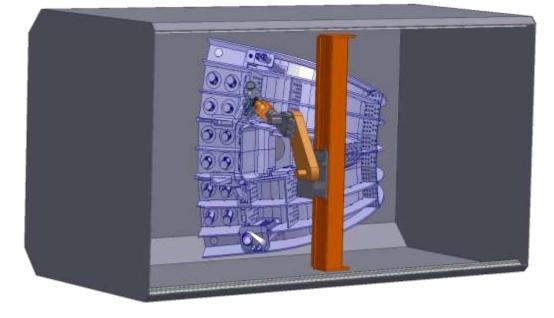
Вакуумный сосуд – полностью сварная конструкция, которая должна выдерживать давление охлаждающей воды в 24 бар, а также сильные магнитные силы реактора в случае быстрой коммутации.



Сварка раздельным лучом (МТЭР)

Сегментация сектора для полностью готового модуля

Рабочая камера



ЭЛ-сварочная машина К6000.

Объем: 630 м3

Мощность пучка: 40кВт при 80

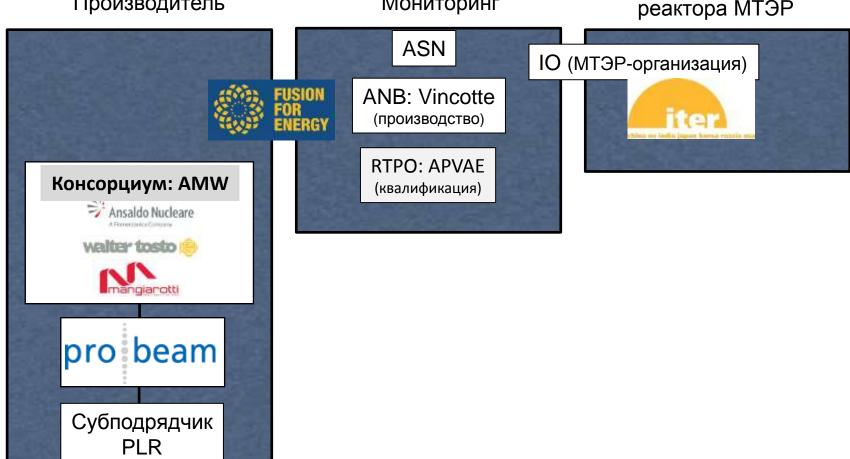
кВ

Рабочая камера

Слева и сверху: Первый ЭЛ-экземпляр, произведенный probeam

Справа: Полномасштабный экземпляр, произведенный DCNS

Макеты



Организация проекта

Участники проекта:

Производитель

Рабочая компания термоядерного Мониторинг реактора МТЭР

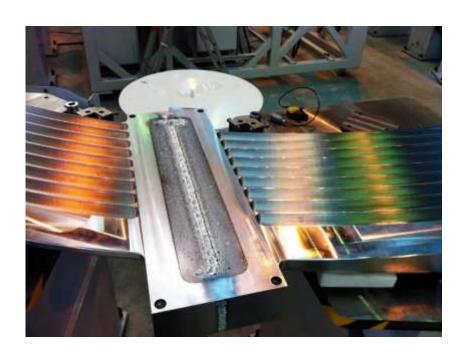
1. Шаг: образование Т-образных разрезов

2. шаг: подготовка подсборок

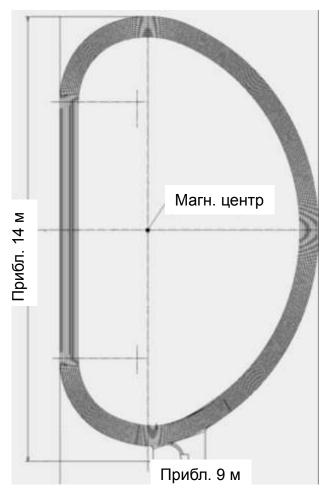
Краткое описание

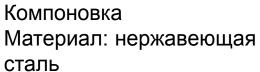
- Для изготовления плазменного сосуда МТЭР применяется электронно-лучевая сварка, позволяющая получить требуемую точность.
- Производительность данной технологии важна для реализации графика проекта.
- Поскольку электронно-лучевая сварка является новым производственным методом для крупногабаритных конструкций, проверка и интеграция в существующие стандарты заняла долгое время.

Производство радиальной пластины для МТЭР D-образных катушек



Рабочий вакуум 3 х 10-2 мбар


Производство радиальной пластины для МТЭР D-образных катушек



ЭЛ-технология - применение: сварка железнодорожных систем/проект МТЭР



ЭЛ-сварка с локальной вакуумной камерой Материал: алюминий

Успешное завершение 70 радиальных пластин из Европы

Варианты применения Электронно Лучевой технологии в Авиационной промышленности

сварка элементов турбины -Авиация

Технические характеристики:

Объем камеры: 0,7-1,0 м³

Макс. напряжение: 80 кВ

Мощность пучка: 15 кВт

Время цикла: 60-600 с

Заготовка: элементы турбины

Материал: AMS сталь и Ni-Leg.

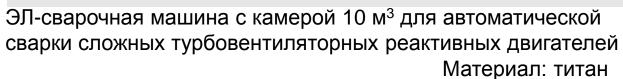
Общие и пользовательские преимущества:

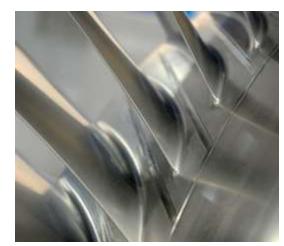
- Компактная ЭЛ-сварочная машина
- Камера 0,7 / 1 кв. м
- Процесс с несколькими зажимными системами

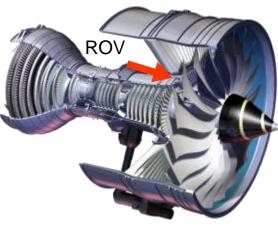
К7 машина

К10 машина

Сварка титановых сплавов


ЭЛ-сварочная машина с камерой 10 м³ с поворотно-наклонным манипулятором




Корпус двигателя Материал: титан

ЭЛ-сварка колеса турбины авиационного двигателя

Вид шва (сверху) и модель двигателя Trent 900

ЭЛ-сварочная машина К40

ЭЛ-сварочная машина с камерой 4 м³ с поворотно-наклонным манипулятором

Коническое зубчатое колесо, сваренной ЭЛсваркой

ЭЛ-технология - применение: сварка турбинных колес

Турбинное колесо из кованного алюминия

От мелких до крупных деталей аэрокосмической промышленности с разными требованиями

Результат:

- Сварка заготовок сложной формы
- Сварка разных материалов (пример стали высокого сорта со сплавом на основе Ni)
- Сокращение доработки

Продукт – процесс – материал:

Процесс: две детали, внутреннее

рабочее колесо и внешнее кольцо

Материал: AIMgSi1

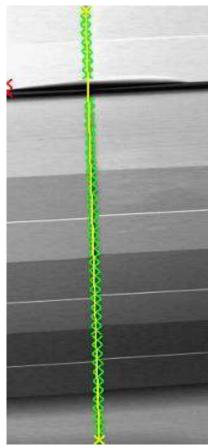
Глубина провара: > 2 мм (каждое крыло)

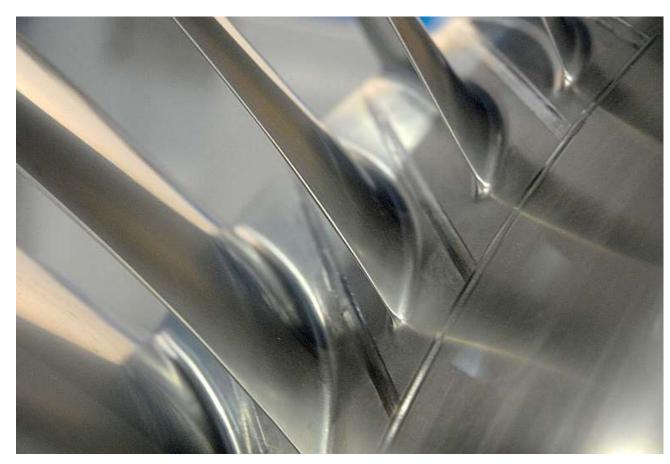
Macca: 0,5 кг

Турбинное колесо

Макроразрез шва

Сварка компонентов двигателя без участия оператора

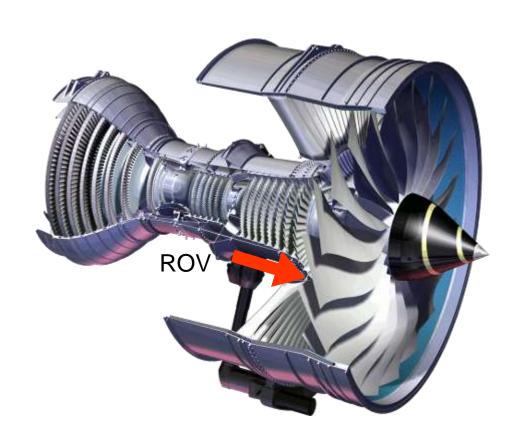




Полностью автоматизированная сварка корпуса переднего подшипника для реактивных двигателей Trent 900 компании Rolls-Royce plc.

Автоматический контроль швов

Место сварки на обратной стороне ROV



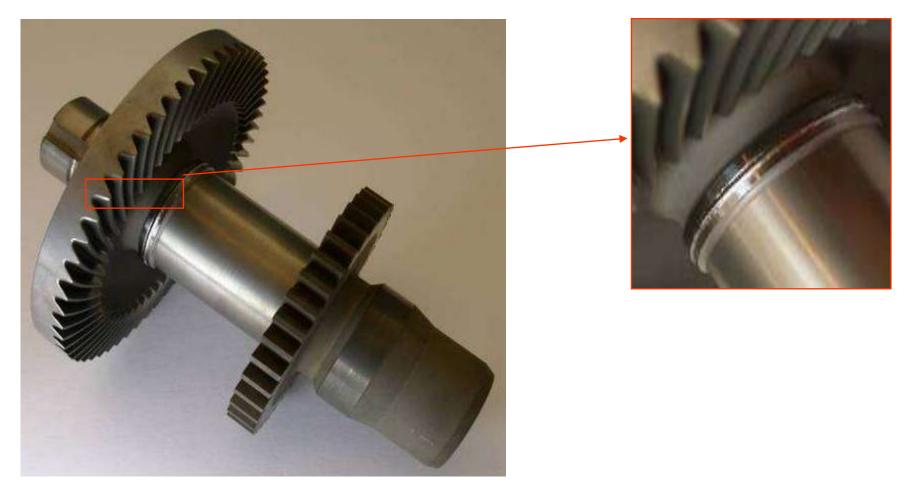
Место сварки на передней стороне ROV

Сварка компонентов двигателя без участия оператора

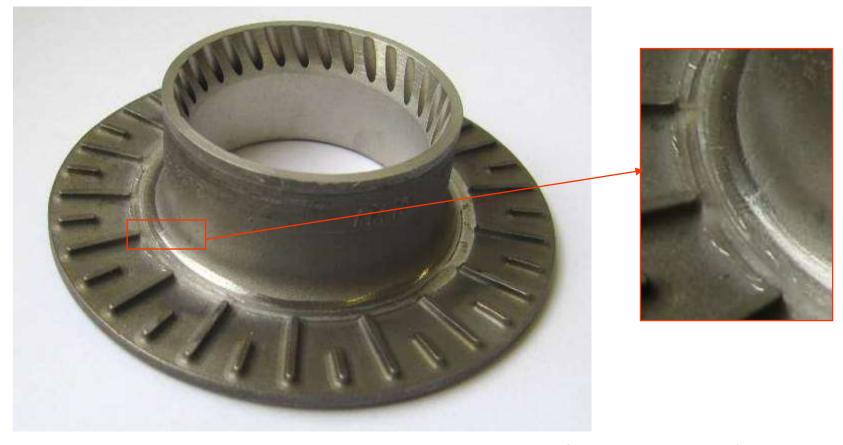
Готовый корпус переднего подшипника с кольцом лопастей

Модель реактивного двигателя Trent 900

Компоненты для авиации



Опорная конструкция, сваренная ЭЛ Материал: алюминий


Подлокотник пассажирского сиденья, сваренный ЭЛ (RECARO Aircraft Seating) Материал: алюминиевое литье под давлением

Компоненты для авиации

Коническое зубчатое колесо, сваренное электронно-лучевой сваркой (Pratt &Whitney, PW600) Материал: AMS6265

Компоненты для авиации

Ремонт направляющей планки системы впрыска (Pratt & Whitney)

Детали вертолета

Виброгасители из титана для лопастей винта вертолета с 5 ЭЛ-швами

Кольцо статора с более чем 300 ЭЛ-швами для соединения лопастей к кольцу и кольца к фланцам

ЭЛ-перфорация в камере сгорания для вертолетов

Варианты применения Электронно Лучевой технологии в Космической индустрии

EADS SPACE - изготовление элемента спутника

Технические характеристики:

• Объем основной камеры: 46 м³

• Объем дополнительной камеры: 10 м³

• Внутренняя вакуумная раздвижная дверь

• Два ЭЛ-генератора (горизонтальное и вертикальное положение)

- ЭЛ-генератор (вертикальное движение), скользящее устройство (600 мм)
- 3 ССD видеокамеры для мониторинга
- Номинальное ЭЛ ускоряющее напряжение:140 кВ
- Номинальная мощность ЭЛ-генератора:15 кВт
- Рабочий вакуум:
 5 х 10⁻⁵ мбар

Сварка в космической отрасли

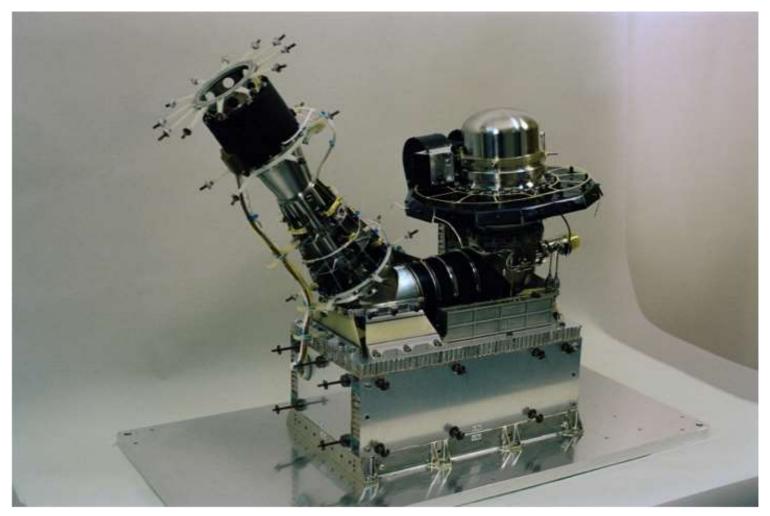


Сварка материалов для больших плит сфер топливного бака АРИАН-5

EADS Space Transportation

Сварка топливных баков для космической промышленности

Компоненты для космической промышленности



Корпус для ионного источника космического магнитного массспектрометра (Rosina - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) Материал: титан

Главная камера космического магнитного масс-спектрометра (Rosina - Rosetta Orbiter Spectrometer for Ion and Neutral Analysis)
Материал: титан

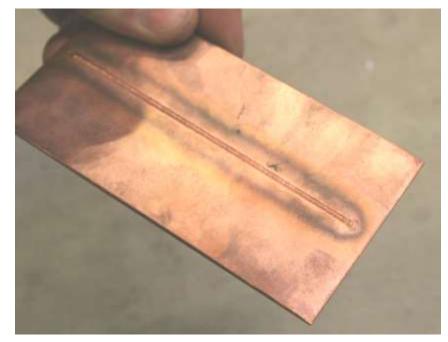
Спектрометр Орбитального Зонда Rosetta

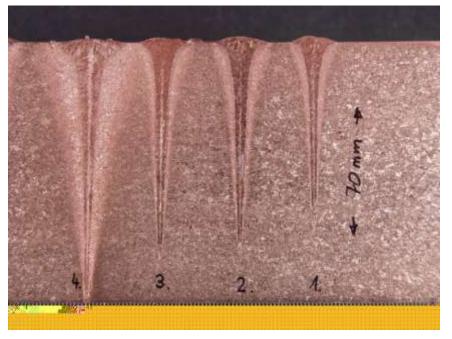
Источник: http://rosetta.jpl.nasa.gov/instruments

Сварка Медных сплавов

Преимущества электронно-лучевой сварки меди

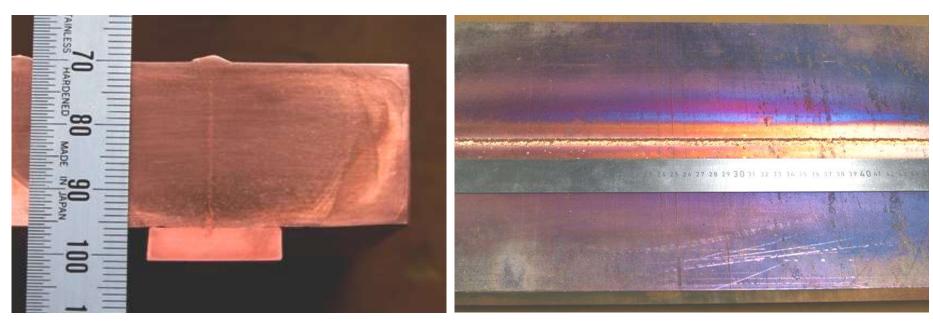
Почему электронно-лучевая сварка (ЭЛ) подходит для сварки Си + сплавов?


- 1) ...благодаря большому разнообразию глубины провара
- 2) ... благодаря полезным свойствам ЭЛ-швов
- 3) ... благодаря возможностям проектирования
- 4) ... благодаря возможности сочетать с Си другие материалы



Большое разнообразие глубины провара

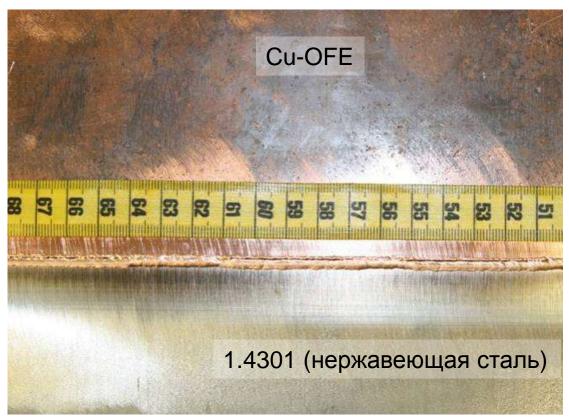
- Высокая плотность мощности пучка электронов: эффект глубокой сварки
- Глубина провара от < 1 мм до > 60 мм за 1 слой
- В общем случае для сварки Си пучком электронов прогрев не требуется
- Отсутствует оптическое отражение на поверхности материала от пучка электронов


OF-Cu – пластина, толщина 2 мм

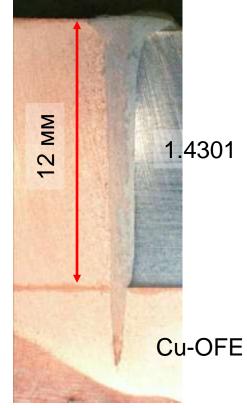
OF-Cu – пластина, толщина **70 мм**

Полезные свойства ЭЛ-швов

- Подвод заданного тепла: малая зона расплавления
- Минимальное воздействие на материал рядом с ЭЛ-швом
- Тонкие и параллельные ЭЛ-швы: малая деформация
- В общем случае для сварки Cu пучком электронов **наполнитель** не требуется



SE-Cu, толщина 25 мм, тонкий ЭЛ-шов


SE-Cu, толщина 25 мм, поверхность

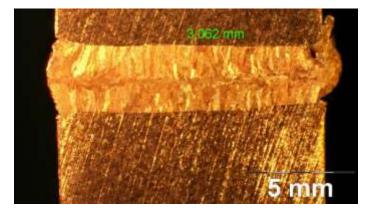
Возможность сочетания с Си других материалов

- За счет высокой плотности мощности пучка электронов
- Примеры: Си и сталь/бронза и сталь

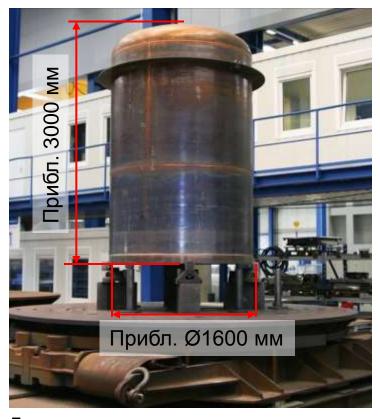
1.4301 с Cu-OFE, поверхность

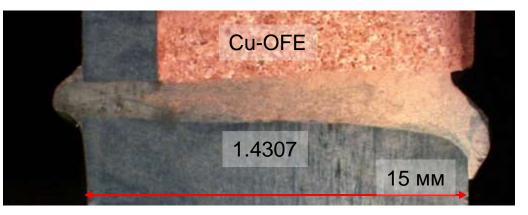
1.4301 с Cu-OFE, макросечение

Примеры криогенных баков из Cu-OFE


- Глубина провара: 12 мм для ЭЛ-шва полного провара
- 3 радиальных и 2 продольных ЭЛ-шва на детали
- Без прогрева, без наполнителя
- Требуется герметичность Не

Внешний вид

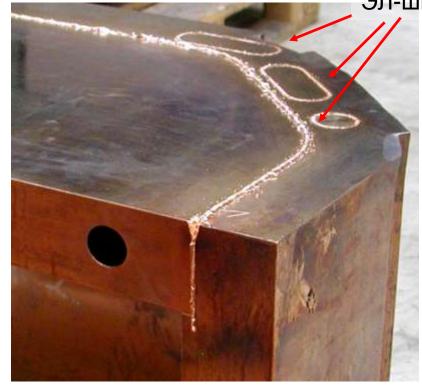

Поверхность



Макросечение

Примеры криогенных баков из Cu-OFE

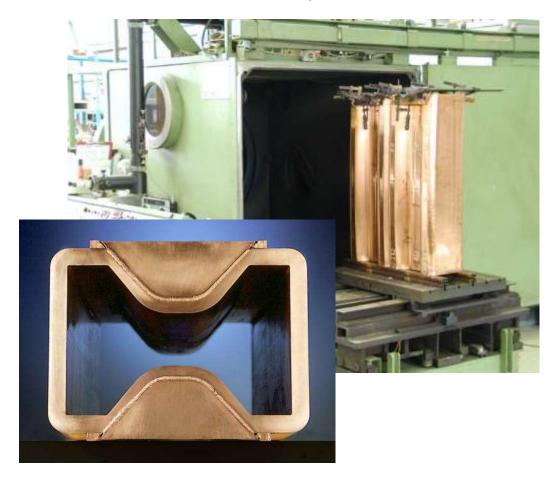
- Глубина провара: 12+3 мм полный провар
- Без прогрева, без наполнителя
- Требуется герметичность Не


Деталь

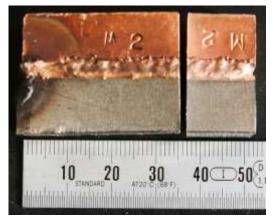
Верхний валик и макросечение (без косметической обработки)

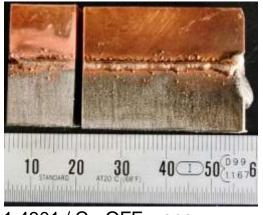
Примеры отсека из Си-НСР

- Глубина провара: 17 мм; 38 мм; 57 мм в качестве ЭЛ-швов частичного провара
- Без прогрева, без наполнителя
- Программирование разных контуров с помощью САD-чертежа

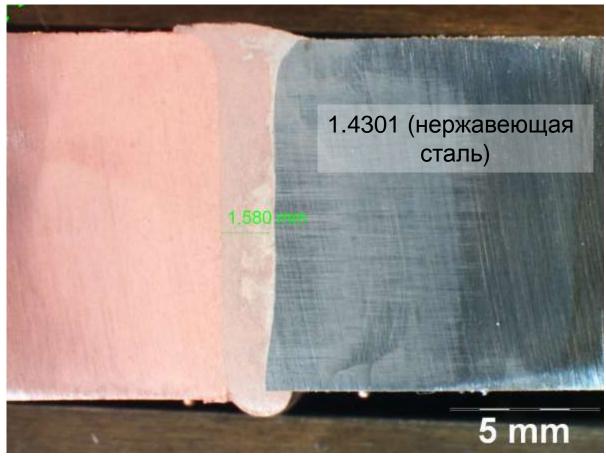


Примеры отливок из CuCrZr (Elbrodur)


- Глубина провара: 40 мм в качестве ЭЛ-швов частичного провара
- Без прогрева, без наполнителя
- Калиброванное литье в уже готовые формы перед ЭЛ-сваркой



ЭЛ-примеры – соединение Cu-OFE / 1.4301


- Глубина провара: 12 мм в качестве ЭЛ-шва полного провара
- Без прогрева, без наполнителя

1.4301 / Cu-OFE, поверхность

1.4301 / Cu-OFE, корень

1.4301 / Cu-OFE, макросечение

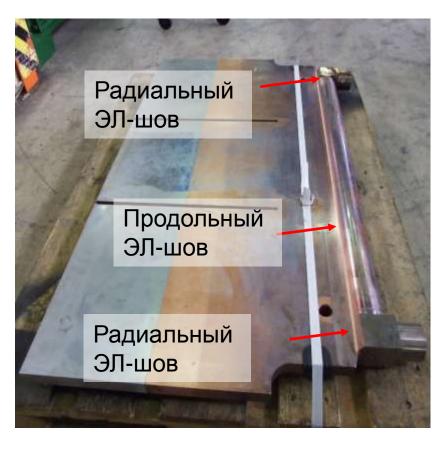
Примеры гибких проводников из Cu- HCP R200

- Без прогрева, без наполнителя
- Отсутствует воздействие на слой серебра во время / после ЭЛ-сварки
- 2 типа:

Тип 1: конструкция с заделанным Cu-кабелем

Тип 2: конструкция с пластинчатой лентой и разъемами с серебряным

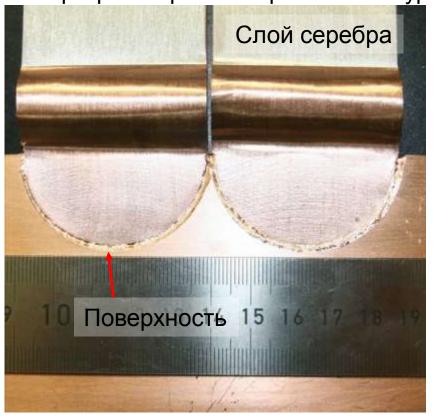


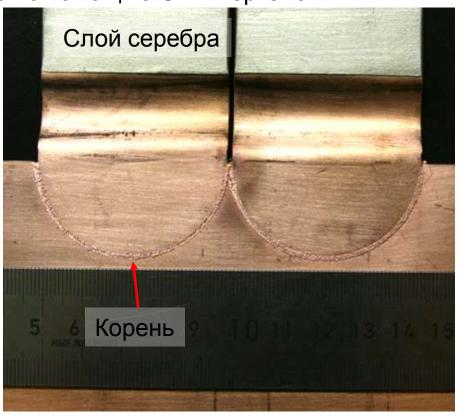

Сильноточные гибкие проводники, тип 1


Сильноточные гибкие проводники, тип 2

Примеры охлаждающих плит из Cu- HCP R275

- Глубина провара: до 40 мм
- Без прогрева, без наполнителя
- Разные сварочные работы над деталью (продольные и радиальные ЭЛ-швы)
- Преимущество: глубокая сварка в граничных зонах

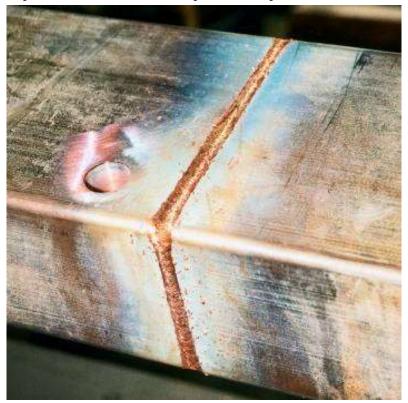




Примеры проводников из Cu- HCP R200

- Глубина провара: 3 мм в качестве ЭЛ-шва полного провара
- Ушко, покрытое серебром: отсутствует воздействие на слой серебра во время / после ЭЛ-сварки


• Программирование разных контуров с помощью САD-чертежа



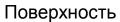
Примеры сильноточных проводников из Си-НСР

- Глубина провара: 15-40 мм
- Без прогрева, без наполнителя
- Радиальная ЭЛ-сварка квадратного профиля («угловой» радиальный ЭЛ-шов)
- Требуется герметичность: через проточную охлаждающую воду

Примеры бронзы CuSn12Ni со сталью 16MnCr5

- Глубина провара: 20 мм в качестве ЭЛ-шва частичного провара
- Без прогрева, без наполнителя

Поверхность



Макросечение

Примеры ЭЛ-пайки датчика из CuZn38Pb2

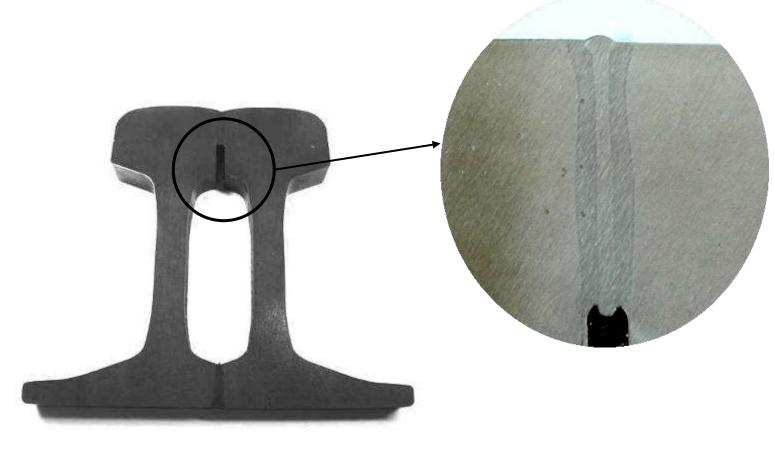
- Пайка латуни пучком электронов
- Припой: **L-Ag55Sn**
- Деталь паялась вертикально расфокусированным электронным лучом

Макросечение

Железнодорожный транспорт применяемость

Железнодорожный транспорт - применяемость

ІСЕ-высокоскоростные поезда


Сцепки ІСЕ-поездов

ЭЛ-сварка алюминиевой конструкции с вагоном Глубина сварки 40 мм

Острие сердечника крестовины стрелочного перевода, механически обработанное и сваренное из стандартных рельсов, и имеющее вид катаных рельсов.

Поперечное сечение острия сердечника крестовины стрелочного перевода со сварным швом вверху и внизу

Применяемость:

- Сварка прямого шва вдоль стандартного рельса
- Макс. длина сварного шва: около 3,5 м
- Обработка рельсов общей длиной до 8 м
- Макс. глубина сварки: прибл. 35 мм
- Материал: 350 НАТ, содержание углерода около 0,8 %
- Полностью автоматизированная система, включая сборку/монтаж на приспособлении, предварительный прогрев, ЭЛ-сварку, последующий нагрев и контроль качества
- Регистрация технологических данных

Предварительная сборка рельса в приспособлении

Камера с приспособлением и коротким рельсом

- Камера с двумя горизонт. ЭЛ-генераторами
- Длина рабочей камеры: 13 м
- Мощность: 15 кВт, Ускоряющее напряжение: 80 кВ
- Общая длина: прибл. 60 м х 20 м

Лазерная сварка при пониженном давлении – преимущества

Экономия монтажного пространства:

- Платформенная концепция

- Модульная концепция

Время цикла 15с..20с

Мониторинг процесса Контроль качества Высокое качество сварных швов

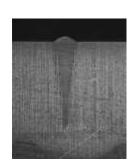
Отсутствуют брызги расплавленного металла

Минимальный подвод тепла позволяет добиться малого искривления

Глубина сварки 2 мм...4 мм

Пучок твердотельного лазера вместо пучка электронов

Лазерная сварка при пониженном давлении – глубина провара



1000 100 мбар Глубина сварки увеличивается до 35 %, давление до 100 мбар. Поэтому существенного увеличения глубины провара не наблюдается

1000 мбар

глубина сварки: 3,4 мм

100 мбар

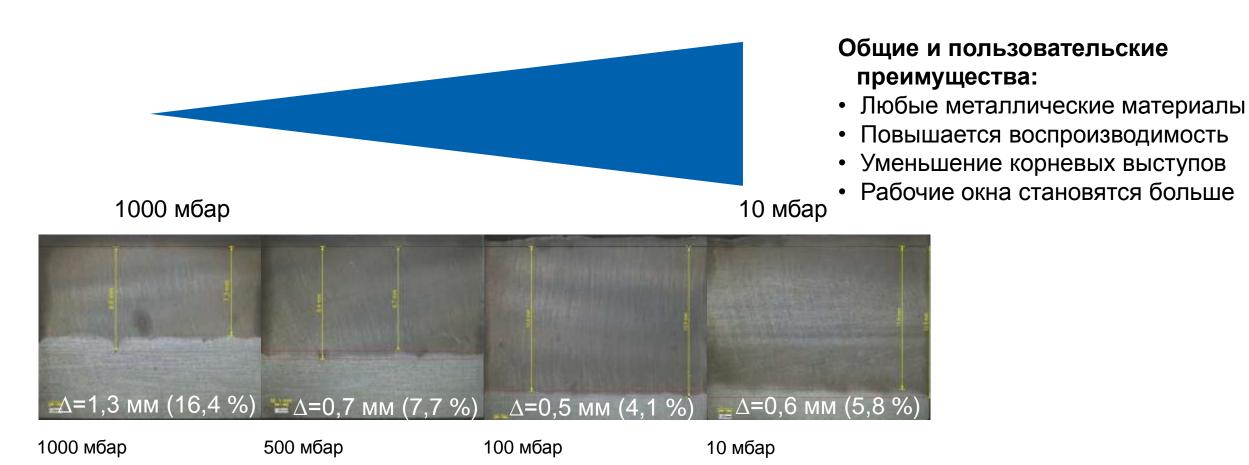
глубина сварки: 4,9 мм

10 мбар

глубина сварки: 5,0 мм

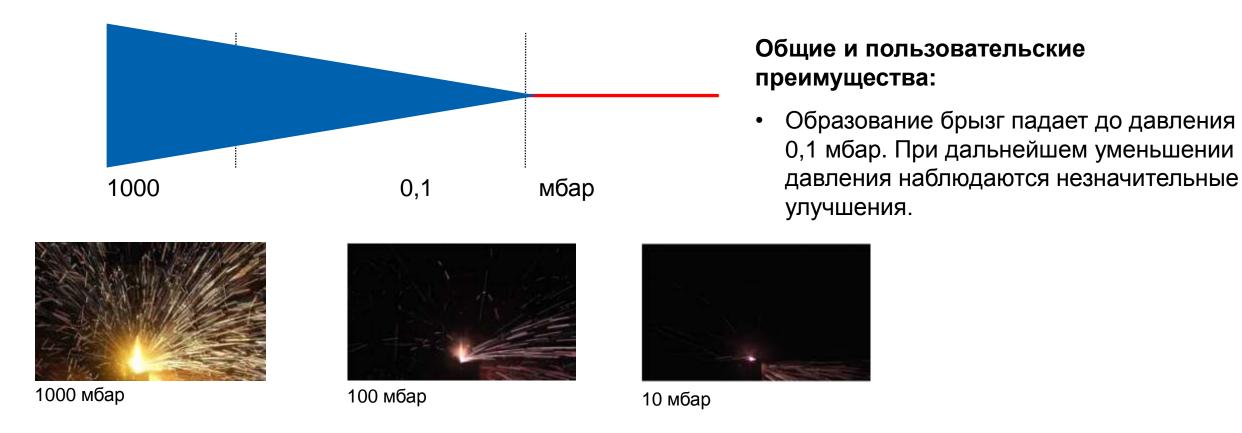
1 мбар

глубина сварки: 5,1 мм



0,1 мбар

глубина


сварки: 5,0 мм

Лазерная сварка при пониженном давлении - воспроизводимость

Оригинал: Институт стыковочной и сварочной техники, Технический Университет, Брауншвейг

Лазерная сварка при пониженном давлении - разбрызгивание

Оригинал: Институт стыковочной и сварочной техники, Технический Университет, Брауншвейг

Оригинал: Институт стыковочной и сварочной техники, Технический Университет, Брауншвейг Общие и пользовательские преимущества:

- 1/3 экономия мощности лазера для атмосферной лазерной сварки
- Уменьшение разбрызгивания
- Оптимизация процесса за счет малой плазменной горелки
- Более узкие сварные швы
- Сокращение выбросов

1000 мбар

100 мбар

10 мбар

Объем камеры: 2 м³ (8 компонентов одновременно)

Макс. напряжение: 60 кВ

Мощность пучка: 15 кВт

Время цикла: 15 с

Заготовка: трансмиссионное колесо,

VL корпус с трансмиссионным колесом

Материал: 20MnCr5

Общие и пользовательские преимущества:

- Комплексная система, включая обнаружение / промывку / соединение / размагничивание / сварку и ультразвуковые испытания
- Максимальная гибкость
- Универсальное производство
- Высокая надежность

Применяемость в трансмиссии

Лазерная сварка при пониженном давлении - загрязнение

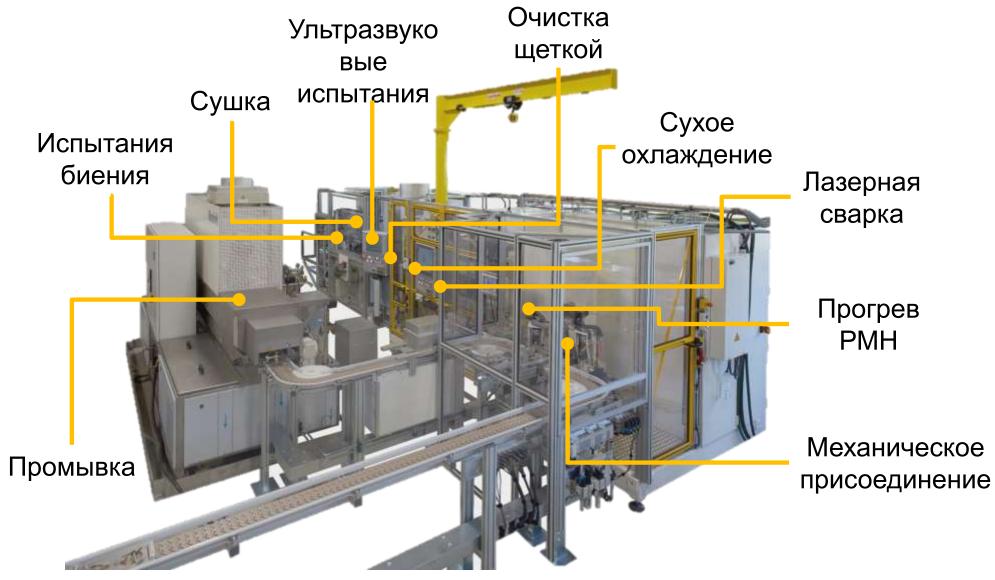
1000 мбар

- Чистый компонент, зона шва окисляется.
- Большое выделение дыма в камере.
- Быстрое загрязнение защитного стекла.

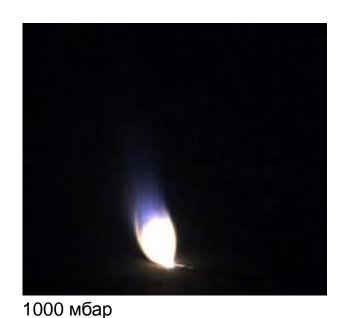
10 мбар

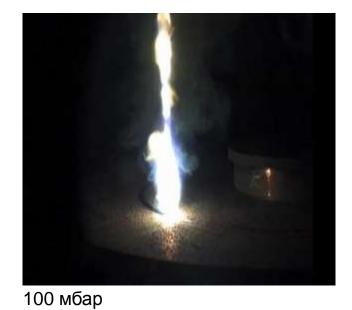
- Чистый компонент, зона шва окисляется.
- Сильное загрязнение изза дыма в камере.
- Снижено загрязнение защитного стекла.

0,1 мбар


- Компонент в камере покрывается дымом, но очень легко удаляется, зона шва не окисляется.
- Дополнительно уменьшается загрязнение защитного стекла.

0,01 мбар




- Чистый компонент, зона шва не окисляется.
- Камера обрабатывается паром с металлом.
- Отсутствуют заметные загрязнения на защитном стекле.

Производственные линии трансмиссионных колес: система GEARline

Полностью автоматизированная сварочная линия зубчатых колес от pro-beam

10 мбар

Общие и пользовательские преимущества:

- Уменьшение общей стоимости владения (ОСВ)
- 1/3 экономия мощности лазера для атмосферной лазерной сварки
- Уменьшение разбрызгивания
- Оптимизация процесса за счет малой плазменной горелки
- Более узкие сварные швы
- Сокращение выбросов
- Глубина сварки больше в сравнении с лазерной сваркой

- Любые металлические материалы
- Повышается воспроизводимость
- Уменьшение корневых выступов
- Рабочие окна становятся больше
- Лазерная сварка RP и ЭЛ, используемая в системе GEARline

Спасибо за внимание!

info@robotek.msk.ru +7 (495) 778-63-88 www.robotek.msk.ru www.pro-beam.com